Using NumPy
After install NumPy, import it as a library:
import numpy as np |
Creating NumPy Arrays
From a Python List
my_list = [1,2,3] |
Built-in Methods
np.zeros((5,5)) : Generate arrays of zeros
np.ones((3,3)) : Generate arrays of ones
np.eye(4) : Creates an identity matrix
arange
Return evenly spaced values within a given interval.np.arange(0,10)
>> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
np.arange(0,11,2)
>> array([ 0, 2, 4, 6, 8, 10])linspace
Return evenly spaced numbers over a specified interval.np.linspace(0,10,5)
>> array([ 0. , 2.5, 5. , 7.5, 10. ])Note: arange 和 linspace不同:arange是給每個數的間隔,linspace是給有多少個數
random
rand
Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).np.random.rand(2,2)
>> array([[0.64065034, 0.16643695],
[0.5944612 , 0.96361622]])randn
Return a sample (or samples) from the “standard normal” distribution over.np.random.randn(2,2)
>> array([[-0.10332894, 0.12954978],
[ 0.535127 , -2.51244816]])randint
Return random integers from low (inclusive) to high (exclusive).np.random.randint(1,100,10)
>> array([13, 64, 27, 63, 46, 68, 92, 10, 58, 24])
- reshape
Returns an array containing the same data with a new shape.arr = np.arange(25)
arr.reshape(5,5)
>> array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
Attributes
shape
Shape is an attribute that arrays have.arr = np.arange(4)
arr.shape
>> (4,) #vector
arr.reshape(1,4).shape
>> (1, 4)dtype
Use dtype to grab the data type of the object in the array.arr.dtype
>> dtype('int64')
NumPy Indexing and Selection
NumPy Indexing and Selection
The simplest way to pick one or some elements of an array looks very similar to python lists:
arr.dtype |